INVESTIGACIÓN

EFICIENCIA DE RECUPERACIÓN DEL NITRÓGENO EN EL SISTEMA PLANTA-SUELO EN UN CULTIVO DE TRIGO BAJO MANEJOS DE SUELO ALTERNATIVOS EN UN ULTISOL DE LA IX REGIÓN

Efficiency of recovery of N in the plant-soil system on a wheat crop under alternative soil tillage in an Ultisol in the IX Region

Inés Pino, Juan Luis Rouanet, Felipe Zapata, Ana María Parada y Adriana Nario

ABSTRACT

In the IX Region of Chile, the use of the soil has been intensified due to the increasing demand for higher yields and better wheat (Triticum aestivum L.) quality, leading to an increasing use of nitrogen (N)-fertilizers. In this study three soil tillage systems using ^15N were compared to assess the efficiency of recovery of N-fertilizers, and consequently, report on the possibility of reducing the total cost of the crop. The soil management systems compared were: 1) no till and burning crop residues (CL + Q); 2) no till and no burning (CL – Q), which is considered the most protective soil system management, recently adopted by some farmers; and 3) burning crop residues and soil plough down (TRAD). The experimental design was completely randomized blocks with four replicates of each treatment. Commercial Urea fertilizer was used in the “macroplots”, whereas Urea labeled with ^15N fertilizer, 10% atoms in excess (a. e.) was used in “microplots”. The N-fertilizer “recovered” in the soil profile (0 – 80 cm) at the end of the fallow period, prior to seeding the following crop, was 59% for (CL + Q), 58% for (CL – Q), and 49% for (TRAD). By adding the figures of N recovery by plants and soil, the total N recovery was 94; 87; and 81%, for CL + Q, CL – Q and TRAD, respectively.

Key words: ^15N-fertilizer, N recovery efficiency, N balance.

RESUMEN

En la IX Región, Chile, se ha intensificado el uso del suelo a causa de la fuerte demanda por producción y por calidad del trigo (Triticum aestivum L.), incrementando notablemente el uso de los fertilizantes nitrogenados. En este estudio se compararon tres sistemas de manejo del suelo en un cultivo de trigo, utilizando ^15N-fertilizante, para evaluar la eficiencia de recuperación del N fertilizante y, consecuentemente, informar la posibilidad de disminuir su incidencia en los costos totales del cultivo. Los sistemas que se evaluaron fueron: 1) cero labranza y quema de residuos (CL + Q); 2), el sistema más conservacionista de manejo, sin inversión de suelo y manejo de residuos en la superficie, de incipiente uso por los agricultores (CL – Q); y 3) inversión del suelo y uso del fuego para la eliminación de residuos (TRAD). El diseño experimental correspondió a bloques

2Comisión Chilena de Energía Nuclear, Sección Técnicas Nucleares en Agricultura, Casilla 188-D, Santiago, Chile. E-mail: ipino@cchen.cl
3Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Carillanca, Casilla 58-D, Temuco, Chile. E-mail: jrouanet@carillanca.inia.cl
4Organismo Internacional de Energía Atómica, Sección Manejo de Suelo, Agua y Nutrición de Plantas. P.O. Box 100, A-1400, Viena, Austria. E-mail: F.Zapata@iaea.org

completamente al azar con cuatro repeticiones por tratamiento. Se establecieron macroparcas manejadas con fertilizante comercial Urea y microparcas manejadas con Urea marcada, al 10% átomos en exceso de 15N (a. e.). El N-fertilizante retenido en el perfil del suelo (0 – 80 cm) al finalizar el período de barbecho, anterior a la siembra de la especie siguiente en la rotación de cultivos, fue 59% para CL + Q, 58% para CL – Q y 49% para TRAD. Sumando los valores de eficiencia de recuperación del N en la planta y en el suelo se totaliza un 94; 87; y 81% para los sistemas CL + Q, CL – Q y TRAD, respectivamente.

Palabras clave: 15N fertilizante, eficiencia de recuperación de N, balance de N.

INTRODUCCIÓN

El cultivo de cereales en la IX Región se caracteriza por una alta demanda en producción y en calidad, lo que ha conducido a un uso intensivo del suelo y a un aumento en los costos de producción. En trigo la inversión en fertilizantes nitrogenados representa entre 29 y 37% de los costos totales en los sistemas de producción tradicional (Godoy y Rouanet, 1999).

Dada la necesidad productiva, el suelo se ha convertido en un recurso frágil cuando es usado con una intensidad mayor que su capacidad de recuperación, por ejemplo, a través del uso continuo de laboreo con inversión y eliminación de los residuos de cosecha.

Las técnicas de manejo agronómico del suelo, como es el uso de la quema o eliminación de la cubierta vegetal, afectan la cantidad de nutrientes presentes en el suelo, especialmente del N. Además se incrementa el escurrimiento superficial, afectando a su vez la capacidad de retención de agua del suelo y la eficiencia de uso de los fertilizantes en la producción de los cultivos (Aggarwal et al., 1997). Cualquier N-fertilizante que se pierde de un sistema de producción agrícola, descontando la exportación de N en el producto cosechado, significa una baja eficiencia de uso de un recurso de alto costo, el cual incide significativamente en la relación costo/beneficio de la empresa agrícola, pudiendo también contribuir a los problemas ambientales por efecto de las pérdidas de nitratos hacia aguas subterráneas o escurrimiento superficial (Powlson et al., 1992; Mac Donald et al., 1997).

El manejo del suelo y la rotación de cultivos elegidos afectan las formas de transformación de los nutrientes aplicados como fertilizantes, su incorporación en la materia orgánica, su disponibilidad en la solución del suelo, y su absorción por la planta y, finalmente la eficiencia de uso de ellos (Sijtsma et al., 1998). En este contexto, el uso del isótopo 15N es un elemento clave para dar respuesta a la problemática del manejo racional de la nutrición vegetal.

El objetivo de esta investigación fue evaluar la eficiencia de recuperación de 15N fertilizante (ERNF), y el balance de N en el sistema suelo-planta, bajo tres sistemas de manejo del suelo en un Ultisol de la IX Región de Chile, determinando los parámetros convencionales e isotópicos en el suelo y en la planta para establecer una evaluación cuantitativa entre los sistemas estudiados.

MATERIALES Y MÉTODOS

En mayo de 1997 se estableció un ensayo de campo en el fundo Buenos Aires (38°37’ lat. Sur; 73°04’ long. Oeste), sector Nueva Imperial, Temuco, Chile, el cual consideró el cultivo de trigo (Triticum aestivum L.) cv. Dalcahue bajo tres sistemas de manejo del suelo. El suelo presenta una topografía de lomaje fuerte con pendiente de 15 a 20%, correspondiendo a la serie Araucano, orden Ultisol (Typic Hapludult).
El total de las precipitaciones en la temporada de estudio fue de 1.367,5 mm, con mayor concentración en los meses de mayo (198,5 mm), junio (267,5 mm), julio (219,5 mm) y octubre (186 mm), con valores inferiores a 70 mm en los meses de noviembre de 1997 a marzo de 1998.

Se utilizó un diseño estadístico de bloques completamente al azar (BCA) con cuatro repeticiones por tratamiento, determinando las diferencias mínimas estadísticas con el test de Scheffé (1953). Los sistemas de manejo de suelo fueron: cero labranza y quema de residuos (CL + Q), cero labranza sin quema de residuos (CL - Q), y sistema tradicional con invernadero del suelo y quema de residuos (TRAD). En cada repetición se establecieron macroparcas con fertilizante comercial urea y microparcas isotópicas con urea marcada, al 10% átomos en exceso (a. e.) de 15N. Se utilizó una dosis de 150 kg de N ha$^{-1}$, aplicada en tres estados fenológicos (manejo que corresponde al utilizado por el agricultor): 15 kg ha$^{-1}$ a la siembra; 67,5 kg ha$^{-1}$ en plena macolla; y 67,5 kg ha$^{-1}$ al inicio de encañado.

A la cosecha (febrero de 1998) se realizó un muestreo de material vegetal, cortando las plantas a nivel del suelo tanto de las macroparcas como de las parcas isotópicas. Éstas fueron separadas en hoja, capotillo, tallo y grano, posteriormente secadas, molidas y sometidas a análisis de N total (Kjeldahl) y 15N para la microparca con un espectrómetro de emisión óptica (FAN-OIEA, NO16ePC, FAN, Alemania). Los parámetros determinados fueron: rendimiento de materia seca, rendimiento de grano a 0 y 12% de humedad base peso seco (0 y 12% HBPS), índice de cosecha, IC = (kg de grano producido/kg de fitomasa total) 100, contenido de N para las distintas partes de la planta, identificando el N derivado del suelo en porcentaje (Ndds %) y del fertilizante marcado (Nddf %). La eficiencia de recuperación de N (ERNF) determinada según la metodología isotópica como:

$$\text{ERNF} \% = \left(\frac{\text{Nddf (kg ha}^{-1})}{\text{dosis de N}} \right) \times 100$$

En mayo de 1998, a fines del período de barbecho, próximo a la siembra del cultivo siguiente, se muestreó el suelo de cada parcela isotópica con un barreno de 2-3 cm de diámetro, para las estratamientos 0-20; 20-40 y 40-80 cm de profundidad. El suelo fue secado al aire, tamizado y sometido a análisis de N total y 15N por espectrometría de emisión óptica. Los parámetros determinados fueron: N total (%), 15N a. e. (%) y porcentaje del N derivado del fertilizante (Nddf %) para cada estrato, procediendo al cálculo de la eficiencia de recuperación del fertilizante en el perfil del suelo.

RESULTADOS Y DISCUSIÓN

En el Cuadro 1 se presenta la producción de fitomasa a la cosecha en el cultivo de trigo. Los valores mayores fueron obtenidos por el cultivo en el sistema CL + Q, seguido por CL - Q y TRAD, considerando tanto la producción de fitomasa de

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Hojas</th>
<th>Capotillo</th>
<th>Tallos</th>
<th>Granos</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL + Q</td>
<td>1.649</td>
<td>2.547</td>
<td>5.994</td>
<td>7.557</td>
</tr>
<tr>
<td>CL - Q</td>
<td>1.436</td>
<td>2.210</td>
<td>5.819</td>
<td>7.028</td>
</tr>
<tr>
<td>TRAD</td>
<td>1.232</td>
<td>2.361</td>
<td>5.787</td>
<td>6.673</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas según test de Sheffé.

CL + Q: cero labranza con quema de residuos.
CL - Q: cero labranza sin quema de residuos.
TRAD: inversión de suelo y quema de residuos.
cada órgano por separado como la producción total. Sin embargo, no hubo diferencias estadísticamente significativas, para la fitomasa y para el índice de cosecha, aunque los sistemas de manejo sin inversión de suelo mantuvieron un mayor porcentaje en producción de grano con relación a la producción total de fitomasa, siendo el IC 43% para ambos y 41% para el sistema TRAD.

Por otro lado, la producción comercial de grano de trigo (12% HBPS) no presentó diferencias significativas entre tratamientos (Figura 1), resultados similares a los encontrados anteriormente en otras investigaciones para este tipo de suelo así como para Andisoles (Rouanet, 1996).

Si se considera la distribución del N en las partes vegetativas de la planta, se encontró que en los sistemas sin inversión de suelo, las hojas contienen aproximadamente más N derivado del fertilizante, comparado al que está presente en los tallos y el capotillo (Figura 2).

En relación al porcentaje de N total existente en las hojas, tallo y capotillo, éste representa aproximadamente 21% del total de N utilizado por la planta en todos los sistemas de manejo. Éste podría retornar al suelo con un sistema de manejo de cero labranza sin eliminación de residuos, y ser utilizado por un nuevo cultivo como una fuente importante de C y N, que llevará a una mantención y recuperación de la materia orgánica, y con ello a un mejoramiento, en el tiempo, del recurso suelo, y un ahorro de fertilizante (Singh y Singh, 1995). Al sumar el N derivado del fertilizante de hojas, tallos y capotillo (residuos postcosecha) se determinó que existe una recuperación diferente en los tres sistemas de manejo de suelo, indicando que hay influencia del sistema que se emplee (Figura 3). En esta misma figura se presentan los valores de N derivado del fertilizante (Nddf) en el grano, en cada uno de los sistemas estudiados.

En el Cuadro 2 se observa el contenido a cosecha de N total, N derivado del fertilizante (Nddf), N derivado del suelo (Ndso), y la eficiencia de recuperación de 15N en las plantas de trigo. La absorción promedio de 15N-fertilizante fue de 53,1; 47,6; y 44,4 kg ha$^{-1}$ para los sistemas CL + Q: cero labranza con quema de residuos. CL - Q: cero labranza sin quema de residuos. TRAD: inversión de suelo y quema de residuos.
Figura 2. Nitrógeno del fertilizante absorbido en tres fracciones de la planta (kg ha⁻¹).
Figure 2. Absorption of N-fertilizer in three plant parts (kg ha⁻¹).

Letras distintas señalan diferencias significativas (P < 0.05) según Test de Scheffé.
CL + Q: cero labranza con quema de residuos.
CL - Q: cero labranza sin quema de residuos.
TRAD: inversión de suelo y quema de residuos.

Figura 3. Nitrógeno del fertilizante absorbido por el residuo (hoja + capotillo + tallo) y grano (kg ha⁻¹).
Figure 3. Fertilizer-N uptake in the residue (leaves + chaff + shoot) and grain (kg ha⁻¹).

Letras distintas señalan diferencias significativas (P < 0.05) según Test de Scheffé.
h: hoja c: capotillo t: tallo.
Cuadro 2. Contenido de N total, N derivado del fertilizante (Nddf), N derivado del suelo (Ndds) y eficiencia de recuperación de 15N (ERNF) en la planta de trigo, bajo tres sistemas de manejo del suelo

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>N total (kg ha$^{-1}$)</th>
<th>Nddf (kg ha$^{-1}$)</th>
<th>Ndds (kg ha$^{-1}$)</th>
<th>ERNF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL + Q</td>
<td>121,46 a*</td>
<td>53,06 a</td>
<td>68,39 a</td>
<td>35,4 a</td>
</tr>
<tr>
<td>CL - Q</td>
<td>102,74 b</td>
<td>44,40 c</td>
<td>58,34 b</td>
<td>29,6 b</td>
</tr>
<tr>
<td>TRAD</td>
<td>109,11 b</td>
<td>47,63 b</td>
<td>61,48 b</td>
<td>31,7 ab</td>
</tr>
</tbody>
</table>

1Planta total = hoja + tallo + capotillo + grano.
*Letras distintas en las columnas señalan diferencias significativas (P ≤ 0,05) según Test de Scheffé.
CL + Q: cero labranza con quema de residuos.
CL - Q: cero labranza sin quema de residuos.
TRAD: inversión del suelo y quema de residuos.

+ Q, TRAD y CL – Q, respectivamente, valores significativamente diferentes (P ≤ 0,05). La absorción de N total fue mayor para el sistema CL + Q.

En el sistema CL + Q de un total de 121,5 kg N total ha$^{-1}$, se encontraron 95,5 kg de N ha$^{-1}$ en el grano (Cuadro 3), siendo el tratamiento que presentó la tendencia de mayor rendimiento. El sistema CL – Q, con un rendimiento en grano superior al obtenido en TRAD, contenía 82,3 kg N ha$^{-1}$ en el grano de un total de 102,7 kg N ha$^{-1}$ contenidos en la planta. Los valores bajos de absorción de N total por la planta en esta temporada pueden ser atribuidos a inmovilización del N disponible, ya que en años consecutivos, no informados, las concentraciones de N en cada órgano de la planta fueron superiores entre 30-40%. El 78% del N total se encuentra en el grano, cifra corriente para los trigos sembrados en invierno (Austin et al., 1980). La mayor absorción significativa de N total en el tratamiento CL + Q, tanto para la planta entera como para el grano, está explicada por el contenido significativamente mayor de Nddf. Aunque en términos absolutos en el sistema CL – Q la recuperación de Nddf en la planta fue menor una vez cosechado el grano, y al permanecer el residuo sobre el suelo, estaría “reciclando” potencialmente 20 kg de N total ha$^{-1}$ y 9 kg ha$^{-1}$ de Nddf residual (Cuadros 2 y 3). Esta cifra, aunque aparentemente baja, representa una mayor eficiencia en el manejo del N-fertilizante por el agricultor, en comparación con los sistemas que hacen uso del fuego eliminando los residuos dejados sobre el suelo. Así mismo, al reducir la evaporación

Cuadro 3. Contenido de N total, contenido de N derivado del suelo (Ndds) y del fertilizante (Nddf) en el grano

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>N total (kg ha$^{-1}$)</th>
<th>Ndds (kg ha$^{-1}$)</th>
<th>Nddf (kg ha$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL + Q</td>
<td>95,50 a</td>
<td>53,65 a</td>
<td>41,85 a</td>
</tr>
<tr>
<td>CL - Q</td>
<td>82,33 b</td>
<td>46,69 b</td>
<td>35,63 b</td>
</tr>
<tr>
<td>TRAD</td>
<td>85,40 b</td>
<td>47,84 b</td>
<td>37,57 b</td>
</tr>
</tbody>
</table>

*Letras distintas en las columnas señalan diferencias significativas (P ≤ 0,05) según Test de Scheffé.
CL + Q: cero labranza con quema de residuos.
CL - Q: cero labranza sin quema de residuos.
TRAD: inversión de suelo y quema de residuos.
por la permanencia de los residuos sobre el suelo, permitiría tener mayores rendimientos de grano en años secos (Borresen, 1999). En el sistema CL – Q se observó una menor eficiencia de recuperación de 15N en comparación a CL + Q. Estos valores indican que en los sistemas con quema de residuo, aunque se recupera más Nddf en la paja que en el sistema que no utiliza la eliminación del residuo, al hacer uso del roce o fuego se pierden desde el sistema suelo-planta 11 kg ha$^{-1}$ en CL + Q y 10 kg ha$^{-1}$ de Nddf en TRAD (Cuadro 2 y 3).

Al completar el ciclo de crecimiento y desarrollo de las plantas en los tres sistemas de manejo, el porcentaje de Ndds es superior al porcentaje de Nddf presente en ellas (Cuadro 2). Esto indicaría que el suelo aporta N hasta el término del cultivo, y que el N proveniente del fertilizante se presentaría en menor proporción producto de inmovilización y/o lixiviación a estratas más profundas en el perfil que aquel donde se desarrolla el sistema radical del cultivo. Es así como Power y Peterson (1998) sugirieron que gran parte del fertilizante aplicado es inmovilizado como N orgánico del suelo o se pierde. Este aspecto es de especial relevancia, ya que ello podría conducir a recomendar una fertilización nitrogenada diferente para cada sistema de manejo (Power y Peterson, 1998).

En el Cuadro 2 se aprecia que el valor más alto de la ERNF, se obtuvo con el sistema de manejo cero labranza más quema (CL + Q) seguido por el sistema tradicional (TRAD). La menor absorción de Nddf, y por consiguiente la menor eficiencia de recuperación en el sistema CL – Q con relación a los otros sistemas de manejo de suelo, se explicaría por una inmovilización del N-fertilizante, fenómeno que según Aulakh et al. (1984), se manifiesta al manejar residuos sobre el suelo, en que el fertilizante aplicado queda depositado sobre éstos, como sucedió en este estudio.

El contenido de N “recuperado” en el suelo en mayo de 1998 se presenta en el Cuadro 4. El

Cuadro 4. Recuperación de 15N-fertilizante por el suelo, mayo de 1998, Nueva Imperial

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Profundidad (cm)</th>
<th>N total (%)</th>
<th>N total (kg ha$^{-1}$)</th>
<th>Nddf (%)</th>
<th>Nddf (kg ha$^{-1}$)</th>
<th>ERNF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL + Q</td>
<td>0-20</td>
<td>0,277</td>
<td>5,500 a*</td>
<td>1,21</td>
<td>67 a</td>
<td>44,0 a</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>0,133</td>
<td>2,600 b</td>
<td>0,46</td>
<td>12 c</td>
<td>8,2 bc</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>0,098</td>
<td>1,900 c</td>
<td>0,48</td>
<td>10 d</td>
<td>6,4 c</td>
</tr>
<tr>
<td></td>
<td>Suma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL – Q</td>
<td>0-20</td>
<td>0,263</td>
<td>5,200 a</td>
<td>1,30</td>
<td>69 a</td>
<td>45,7 a</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>0,115</td>
<td>2,200 b</td>
<td>0,49</td>
<td>11 c</td>
<td>7,5 bc</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>0,086</td>
<td>1,700 c</td>
<td>0,41</td>
<td>7 c</td>
<td>4,7 d</td>
</tr>
<tr>
<td></td>
<td>Suma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAD</td>
<td>0-20</td>
<td>0,249</td>
<td>4,900 a</td>
<td>0,98</td>
<td>49 a</td>
<td>32,7 a</td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>0,155</td>
<td>3,100 b</td>
<td>0,57</td>
<td>18 b</td>
<td>11,4 b</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>0,096</td>
<td>1,900 c</td>
<td>0,36</td>
<td>7 d</td>
<td>4,6 d</td>
</tr>
<tr>
<td></td>
<td>Suma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Letras distintas en las columnas señalan diferencias significativas ($P \leq 0,05$) según Test de Scheffé.
CL + Q: cero labranza con quema de residuos.
CL – Q: cero labranza sin quema de residuos.
TRAD: inversión de suelo y quema de residuos.
Nddf: contenido de N derivado del fertilizante.
ERNF: eficiencia de recuperación de 15N.
valor de N total (%) en el suelo disminuye en las estratías inferiores bajo los tres sistemas de manejo. En el sistema TRAD, sistema de mayor grado de intervención del suelo, a inicios de la temporada siguiente (mayo 1998) y previo a la siembra del cultivo siguiente, se presenta el menor valor de Ndf recuperado para la estrata 0-20 cm de profundidad, tanto en términos porcentuales como absolutos (kg ha⁻¹). El N-fertilizante retenido en el perfil del suelo al finalizar el periodo de barbecho, anterior a la siembra del cultivo siguiente, no superó el 60% para CL + Q y CL − Q. Olson (1982) encontró en un ensayo con trigo de invierno, que 70% del N fertilizante aplicado queda en los primeros 10 cm de profundidad de suelo, y que 81% del fertilizante que permanece en el suelo ha sido inmovilizado al momento de la cosecha.

Un balance del Ndf, construido base a la cifra de recuperación de ERNF por la planta y por el suelo y la dosis de N agregado como fertilizante de 150 kg ha⁻¹ (Cuadros 2 y 4) nos indica una recuperación de 94, 87 y 81% de ¹⁵Ν aplicado en el sistema suelo-planta para los sistemas CL + Q, CL − Q y TRAD, respectivamente. De lo anterior, se podría deducir que las pérdidas de N-fertilizante del sistema planta-suelo fueron 6 y 13% para los sistemas sin inversión de suelo: CL + Q y CL − Q, respectivamente, en tanto que para TRAD las pérdidas fueron 19%, valor similar al encontrado por Powlson et al. (1992) en un suelo franco arcilloso. Sin embargo, Carefoot y Janzen (1997) encontraron que la recuperación de N-fertilizante (planta más suelo), en dos años de cultivo (sucesión avena-trigo), promedió 64,2%, indistintamente del sistema de manejo labranza-residuo utilizado.

El balance global del Ndf recuperado en la planta y el suelo en los diferentes sistemas de manejo fluctuó entre un 81 a un 94%, indicando con ello que el suelo bajo cultivo de trigo mane-jado con sistema tradicional, estaría con mayores pérdidas de N fertilizante, posiblemente atribuido a las pérdidas por erosión. De lo anterior, se puede deducir que en el mediano plazo, 4 a 5 años, una vez iniciada la producción bajo sis-temas de manejo conservacionistas, cero labranza con o sin quema de residuos, el costo de produc-ción puede rebajarse por concepto de ahorro de fertilizantes nitrogenados. El balance de N fertilizante más positivo de N en el suelo, estimado bajo las condiciones del sitio experimental del Fundo Buenos Aires, con 5 años de cero labranza sin quema, indica que el suelo capitaliza y entrega más N que un suelo bajo condiciones de manejo tradicional, lo que además podría explicar los bajos valores de eficiencia de recuperación de N por el cultivo.

CONCLUSIONES

Los datos de esta primera temporada indican que el sistema de manejo del suelo afecta la eficiencia de recuperación del N total por las plantas de trigo, siendo, no obstante, la eficiencia de recuperación del N proveniente del fertilizante (ERNF) baja para todos los sistemas de manejo estudiados.

En relación al Ndf que queda en el perfil del suelo se apreció que este es superior al 50%, encontrándose fundamentalmente en los primeros 20 cm de suelo.

El balance de N fertilizante más positivo de N en el suelo, estimado bajo las condiciones del sitio experimental del Fundo Buenos Aires, con 5 años de cero labranza sin quema, indica que el suelo capitaliza y entrega al cultivo de trigo más N que un suelo bajo condiciones de manejo tradicional.
LITERATURA CITADA

